Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics
نویسندگان
چکیده
Linoleic acid (LA) is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435). This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) was optimized using D-optimal design. At optimum conditions, higher yield% (82.14) and medium oxirane oxygen content (OOC) (4.91%) of MEOA were predicted at 15 μL of H(2)O(2), 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP), flash point (FP), viscosity index (VI), and oxidative stability (OT) were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of -41(°)C. FP of MEOA increased to 128(°)C comparing with 115(°)C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt) more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168(°)C, respectively.
منابع مشابه
Improvement of Physicochemical Characteristics of Monoepoxide Linoleic Acid Ring Opening for Biolubricant Base Oil
For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA) was done by nucleophilic addition of oleic acid (OA) with using p-toluene sulfonic acid (PTSA) as a catalyst for synthesis of 9(12)-hydroxy-10(13)-oleoxy-12(9)-octadecanoic acid (HYO...
متن کاملSynthesis and optimization ring opening of monoepoxide linoleic acid using p-toluenesulfonic acid
Biolubricant base oils, 9,12-hydroxy-10,13-oleioxy-12-octadecanoic acid (HYOOA) was synthesized based on the esterification reaction of Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) with oleic acid (OA) and catalyzed by p-Toluenesulfonic acid. The optimum conditions for the experiment using D-optimal design to obtain high yield% of 84.61, conversion% of 83.54 a...
متن کاملSynthesis and Optimization Process of Ethylene Glycol-Based Biolubricant from Palm Kernel Oil (PKO)
Internationally exploited lubricants are derived from coal and petroleum. Due to their high consumption and effects of their long-term pollution on the environment, it is imperative to use renewable and cheap feedstock for the synthesis of bio-based lubricants. This study presents the synthesis and optimization process of Ethylene Glycol (EG) based bio-lubricant from palm kernel oil. Palm Kerne...
متن کاملOptimization of Whey Powder Production Yield Using Spray Dryer and Assessment of Physicochemical Characteristics of the Whey Powder
Background and Objectives: Whey powder is a product of water drying process separated from the curd during cheese making processes. Furthermore, whey is an organic waste of cheese production, including significant uses in food industries, particularly in dairy and fermentation stages because of its special characteristics and high quantities of lactose. Materials & Methods: In the present stu...
متن کاملProspects of Non Edible Vegetable Oil as a Potential Resource for Biolubricant - A Review”
Increasing environmental pollution concerns and diminishing petroleum reserves has brought in attention towards the use of non edible vegetable oils as an alternative to petroleum oil based lubricants. Non edible vegetable oil plant contains high amount of oil in its seeds which can be converted into biolubricant. Biolubricant is a renewable lubricant that is biodegradable, non toxic and has a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012